Shortcuts

Source code for torch.autograd.graph

import torch
import contextlib
from typing import Callable, Any, Dict, Tuple, Optional, Sequence, List, Set
from torch.utils.hooks import RemovableHandle
from torch.utils._python_dispatch import TorchDispatchMode
from collections import defaultdict
import weakref
import abc

__all__ = [
    "saved_tensors_hooks",
    "save_on_cpu",
    "disable_saved_tensors_hooks",
    "register_multi_grad_hook",
    "allow_mutation_on_saved_tensors",
    "Node",
    "increment_version",
]

class Node(abc.ABC):
[docs] @abc.abstractmethod def name(self) -> str: r"""Returns the name. Example:: >>> import torch >>> a = torch.tensor([0., 0., 0.], requires_grad=True) >>> b = a.clone() >>> assert isinstance(b.grad_fn, torch.autograd.graph.Node) >>> print(b.grad_fn.name()) CloneBackward0 """ ...
@property @abc.abstractmethod def next_functions(self) -> Tuple[Tuple[Optional['Node'], int], ...]: ...
[docs] @abc.abstractmethod def metadata(self) -> dict: r"""Returns the metadata.""" ...
@abc.abstractmethod def _register_hook_dict(self, tensor: torch.Tensor) -> None: ...
[docs] @abc.abstractmethod def register_hook(self, fn: Callable[..., Any]) -> RemovableHandle: r"""Registers a backward hook. The hook will be called every time a gradient with respect to the Node is computed. The hook should have the following signature:: hook(grad_inputs: Tuple[Tensor], grad_outputs: Tuple[Tensor]) -> Tuple[Tensor] or None The hook should not modify its argument, but it can optionally return a new gradient which will be used in place of :attr:`grad_inputs`. This function returns a handle with a method ``handle.remove()`` that removes the hook from the module. .. note:: See :ref:`backward-hooks-execution` for more information on how when this hook is executed, and how its execution is ordered relative to other hooks. Example:: >>> import torch >>> a = torch.tensor([0., 0., 0.], requires_grad=True) >>> b = a.clone() >>> assert isinstance(b.grad_fn, torch.autograd.graph.Node) >>> handle = b.grad_fn.register_hook(lambda gI, gO: (gO[0] * 2,)) >>> b.sum().backward(retain_graph=True) >>> print(a.grad) tensor([2., 2., 2.]) >>> handle.remove() # Removes the hook >>> a.grad = None >>> b.sum().backward(retain_graph=True) >>> print(a.grad) tensor([1., 1., 1.]) """ ...
[docs] @abc.abstractmethod def register_prehook(self, fn: Callable[..., Any]) -> RemovableHandle: r"""Registers a backward pre-hook. The hook will be called every time a gradient with respect to the Node is computed. The hook should have the following signature:: hook(grad_outputs: Tuple[Tensor]) -> Tuple[Tensor] or None The hook should not modify its argument, but it can optionally return a new gradient which will be used in place of :attr:`grad_outputs`. This function returns a handle with a method ``handle.remove()`` that removes the hook from the module. .. note:: See :ref:`backward-hooks-execution` for more information on how when this hook is executed, and how its execution is ordered relative to other hooks. Example:: >>> a = torch.tensor([0., 0., 0.], requires_grad=True) >>> b = a.clone() >>> assert isinstance(b.grad_fn, torch.autograd.graph.Node) >>> handle = b.grad_fn.register_prehook(lambda gI: (gI[0] * 2,)) >>> b.sum().backward(retain_graph=True) >>> print(a.grad) tensor([2., 2., 2.]) >>> handle.remove() >>> a.grad = None >>> b.sum().backward(retain_graph=True) >>> print(a.grad) tensor([1., 1., 1.]) """ ...
@classmethod def __subclasshook__(cls, C): if cls is Node: if ((C is not None and C is getattr(torch._C._functions, C.__name__, None)) or issubclass(C, torch.autograd.function.BackwardCFunction)): return True return NotImplemented def increment_version(tensor): """This function can be used to let autograd know that a given Tensor was modified inplace to enable more accurate error checking within the autograd engine. This is already done automatically by PyTorch functions and within custom Function when mark_dirty() is called appropriately so you only need to call this explicitly if you are doing inplace operation on the Tensor data in a way that Pytorch doesn't know about. For example a custom kernel that reads the Tensor data_ptr and modifies the memory inplace based on this pointer. Note that incrementing the version counter multiple times for a single inplace operation is not problematic. """ torch._C._increment_version(tensor)
[docs]class saved_tensors_hooks(): """Context-manager that sets a pair of pack / unpack hooks for saved tensors. Use this context-manager to define how intermediary results of an operation should be packed before saving, and unpacked on retrieval. In that context, the ``pack_hook`` function will be called everytime an operation saves a tensor for backward (this includes intermediary results saved using :func:`~torch.autograd.function._ContextMethodMixin.save_for_backward` but also those recorded by a PyTorch-defined operation). The output of ``pack_hook`` is then stored in the computation graph instead of the original tensor. The ``unpack_hook`` is called when the saved tensor needs to be accessed, namely when executing :func:`torch.Tensor.backward()` or :func:`torch.autograd.grad()`. It takes as argument the *packed* object returned by ``pack_hook`` and should return a tensor which has the same content as the original tensor (passed as input to the corresponding ``pack_hook``). The hooks should have the following signatures: pack_hook(tensor: Tensor) -> Any unpack_hook(Any) -> Tensor where the return value of ``pack_hook`` is a valid input to ``unpack_hook``. In general, you want ``unpack_hook(pack_hook(t))`` to be equal to ``t`` in terms of value, size, dtype and device. Example:: >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD) >>> def pack_hook(x): ... print("Packing", x) ... return x >>> >>> def unpack_hook(x): ... print("Unpacking", x) ... return x >>> >>> a = torch.ones(5, requires_grad=True) >>> b = torch.ones(5, requires_grad=True) * 2 >>> with torch.autograd.graph.saved_tensors_hooks(pack_hook, unpack_hook): ... y = a * b Packing tensor([1., 1., 1., 1., 1.], requires_grad=True) Packing tensor([2., 2., 2., 2., 2.], grad_fn=<MulBackward0>) >>> y.sum().backward() Unpacking tensor([1., 1., 1., 1., 1.], requires_grad=True) Unpacking tensor([2., 2., 2., 2., 2.], grad_fn=<MulBackward0>) .. warning :: Performing an inplace operation on the input to either hooks may lead to undefined behavior. .. warning :: Only one pair of hooks is allowed at a time. When recursively nesting this context-manager, only the inner-most pair of hooks will be applied. """ def __init__(self, pack_hook: Callable[[torch.Tensor], Any], unpack_hook: Callable[[Any], torch.Tensor]): self.pack_hook = pack_hook self.unpack_hook = unpack_hook def __enter__(self): torch._C._autograd._push_saved_tensors_default_hooks(self.pack_hook, self.unpack_hook) def __exit__(self, *args: Any): torch._C._autograd._pop_saved_tensors_default_hooks()
[docs]class save_on_cpu(saved_tensors_hooks): """Context-manager under which tensors saved by the forward pass will be stored on cpu, then retrieved for backward. When performing operations within this context manager, intermediary results saved in the graph during the forward pass will be moved to CPU, then copied back to the original device when needed for the backward pass. If the graph was already on CPU, no tensor copy is performed. Use this context-manager to trade compute for GPU memory usage (e.g. when your model doesn't fit in GPU memory during training). Args: pin_memory (bool): If ``True`` tensors will be saved to CPU pinned memory during packing and copied to GPU asynchronously during unpacking. Defaults to ``False``. Also see :ref:`cuda-memory-pinning`. Example:: >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD) >>> a = torch.randn(5, requires_grad=True, device="cuda") >>> b = torch.randn(5, requires_grad=True, device="cuda") >>> c = torch.randn(5, requires_grad=True, device="cuda") >>> >>> def f(a, b, c): ... prod_1 = a * b # a and b are saved on GPU ... with torch.autograd.graph.save_on_cpu(): ... prod_2 = prod_1 * c # prod_1 and c are saved on CPU ... y = prod_2 * a # prod_2 and a are saved on GPU ... return y >>> >>> y = f(a, b, c) >>> del a, b, c # for illustration only >>> # the content of a, b, and prod_2 are still alive on GPU >>> # the content of prod_1 and c only live on CPU >>> y.sum().backward() # all CPU tensors are moved back to GPU, for backward >>> # all intermediary tensors are released (deleted) after the call to backward """ def __init__(self, pin_memory=False): def pack_to_cpu(tensor): if not pin_memory: return (tensor.device, tensor.cpu()) packed = torch.empty( tensor.size(), dtype=tensor.dtype, layout=tensor.layout, pin_memory=(torch.cuda.is_available() and not tensor.is_sparse)) packed.copy_(tensor) return (tensor.device, packed) def unpack_from_cpu(packed): device, tensor = packed return tensor.to(device, non_blocking=pin_memory) super().__init__(pack_to_cpu, unpack_from_cpu)
[docs]@contextlib.contextmanager def disable_saved_tensors_hooks(error_message): """Context-manager that disables the saved tensors default hooks feature. Useful for if you are creating a feature that does not work with saved tensors default hooks. Args: error_message (str): When saved tensors default hooks are used when they have been are disabled, a RuntimeError with this error message gets raised. Example:: >>> # xdoctest: +SKIP(failing) >>> message = "saved tensors default hooks are disabled" >>> with torch.autograd.graph.disable_saved_tensors_hooks(message): ... # Raises RuntimeError: saved tensors default hooks are disabled ... with torch.autograd.graph.save_on_cpu(): ... pass """ try: maybe_prev_message = torch._C._autograd._saved_tensors_hooks_get_disabled_error_message() torch._C._autograd._saved_tensors_hooks_disable(error_message) yield finally: # See NOTE: [disabled_error_message invariant] if maybe_prev_message is None: torch._C._autograd._saved_tensors_hooks_enable() else: torch._C._autograd._saved_tensors_hooks_disable(maybe_prev_message)
[docs]def register_multi_grad_hook(tensors: Sequence[torch.Tensor], fn: Callable[[Sequence[Optional[torch.Tensor]]], None]): r"""Registers a multi-grad backward hook. The hook will be called after gradients with respect to every tensor in :attr:`tensors` have been computed. If a tensor is in :attr:`tensors` but is not part of the graph, or if a tensor is not needed to compute the gradients for any ``inputs`` specified for the current ``.backward()`` or ``.grad()`` call, this tensor will be ignored and the hook will not wait for its gradient to be computed. After every non-ignored tensor's gradient has been computed, :attr:`fn` will be called with those gradients. ``None`` will be passed for tensors that did not have their gradients computed. The hook should not modify its arguments. This function returns a handle with a method ``handle.remove()`` that removes the hook. .. note:: See :ref:`backward-hooks-execution` for more information on how when this hook is executed, and how its execution is ordered relative to other hooks. Example:: >>> import torch >>> >>> a = torch.rand(2, 3, requires_grad=True) >>> b = torch.rand(2, 3, requires_grad=True) >>> c = a * b >>> d = a * b >>> >>> def fn(grads): ... print([g is not None for g in grads]) ... >>> torch.autograd.graph.register_multi_grad_hook((a, b, c, d), fn) >>> >>> c.sum().backward(retain_graph=True) [True, True, True, False] >>> c.sum().backward(inputs=(a,), retain_graph=True) [True, False, True, False] >>> """ count: Dict[int, int] = dict() nb_calls = None buffer: Dict[int, List[Optional[torch.Tensor]]] = dict() def get_grad_fn(t): # or grad accumulator if t.requires_grad and t.grad_fn is None: return t.expand_as(t).grad_fn.next_functions[0][0] else: return t.grad_fn grad_fns = list(map(get_grad_fn, tensors)) def get_inner_hook(idx): def inner_hook(grad: torch.Tensor): nonlocal count, nb_calls, buffer id = torch._C._current_graph_task_id() assert id != -1, "expected this hook to be called inside a backward call" count[id] = count.get(id, 0) buffer[id] = buffer.get(id, [None] * len(tensors)) if count[id] == 0: # On the first call, compute the actual nb_calls and buffer nb_calls = sum(torch._C._will_engine_execute_node(g) for g in grad_fns) # type: ignore[attr-defined] buffer[id][idx] = grad count[id] += 1 if count[id] == nb_calls: fn(buffer[id]) del count[id] del buffer[id] return inner_hook class Handle(RemovableHandle): handles: Tuple[RemovableHandle, ...] def __init__(self, handles: Tuple[RemovableHandle, ...]): self.handles = handles def remove(self): for handle in self.handles: handle.remove() def __getstate__(self): return self.handles def __setstate__(self, state): self.handles = state handles: List[RemovableHandle] = [] for i, t in enumerate(tensors): handles.append(t.register_hook(get_inner_hook(i))) return Handle(tuple(handles))
# NOTE [Allow mutation on tensors saved for backward] # # 1. Tensor gets saved for backward # - remember the python object id and the version of the tensor # - remember aliasing information (data_ptr of base + version) # - save the original so we control its lifetime # 2. Any time a tensor gets in-placed # - for each tensor aliased to it: # - check using its object id and version to see if it has been saved # - if it has been saved, clone it # - delete the reference to the original # 3. during backward # - if the clone exists, the tensor must've been modified in-place _allow_mutation_on_saved_tensors_enabled = False def _get_tid(t) -> Tuple[int, int, int]: return (id(t), t.data_ptr(), t._version) def _get_sid(t) -> Tuple[int, int]: return (t.data_ptr(), t._version) class _Handle(): pass class _swap_with_cloned(saved_tensors_hooks): def __init__(self, ctx): def pack_hook(t): tid = _get_tid(t) sid = _get_sid(t) # Tensors saved for backward have an entry in _tid_to_weakhandle handle: Optional[_Handle] = None # Save aliasing information ctx.sid_to_tid[sid].add(tid) # NB: The same tensor (of the same version) can be saved multiple times if tid not in ctx.tid_to_weakhandle: handle = _Handle() ctx.tid_to_weakhandle[tid] = handle ctx.original[handle] = t else: # Store an additional strong reference to the handle handle = ctx.tid_to_weakhandle[tid] return handle def unpack_hook(tup): handle = tup error_msg = ( "Trying to backward outside of the 'allow_mutation_on_saved_tensors' context" "in which the graph was originally recorded.") assert _allow_mutation_on_saved_tensors_enabled, error_msg if handle in ctx.cloned: res = ctx.cloned[handle] else: assert handle in ctx.original, error_msg res = ctx.original[handle] return res super().__init__(pack_hook, unpack_hook) class _CloneArgBeforeMutateMode(TorchDispatchMode): def __init__(self, ctx): self.ctx = ctx def __torch_dispatch__(self, func, types, args=(), kwargs=None): kwargs = kwargs or {} for idx, arg in enumerate(func._schema.arguments): if arg.alias_info is not None and arg.alias_info.is_write: t = kwargs["out"] if arg.is_out else args[idx] tid = _get_tid(t) sid = _get_sid(t) ctx = self.ctx if sid in ctx.sid_to_tid: for tid in ctx.sid_to_tid[sid]: if tid not in ctx.tid_to_weakhandle: # We know that if tid is in sid_to_tid, then it must also be in # tid_to_weakhandle. However, it is possible for the tensor to be # saved at one point, but cleared by backward before it is modified # in-place. Consider the following example: # # >>> a = torch.randn(2, 3, requires_grad=True).clone() # >>> out = (a**2).sum() # >>> out.backward() # >>> a.sin_() continue handle = ctx.tid_to_weakhandle[tid] if handle in ctx.cloned: # The same exact tensor has been cloned already continue ctx.cloned[handle] = ctx.original[handle].clone() del ctx.original[handle] rs = func(*args, **kwargs) return rs class _AllowMutationOnSavedContext(): def __init__(self): self.cloned: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary() self.original: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary() self.tid_to_weakhandle: weakref.WeakValueDictionary = weakref.WeakValueDictionary() self.sid_to_tid: Dict[Tuple[int, int], Set[Tuple[int, int, int]]] = defaultdict(set) def clear(self): self.cloned.clear() self.original.clear() self.tid_to_weakhandle.clear() self.sid_to_tid.clear()
[docs]@contextlib.contextmanager def allow_mutation_on_saved_tensors(): """Context manager under which mutating tensors saved for backward is allowed Under this context manager, tensors saved for backward are cloned on mutation, so the original version can still be used during backward. Normally, mutating a tensor saved for backward will result in an error raised when it's used during backward. To ensure the correct behavior, both the forward and backward should be run under the same context manager. returns: An _AllowMutationOnSavedContext object storing the state managed by this context manager. This object can be useful for debugging purposes. The state managed by the context manager is automatically cleared upon exiting. Example:: >>> import torch >>> with torch.autograd.graph.allow_mutation_on_saved_tensors(): ... # forward ... a = torch.ones(2, 3, requires_grad=True) ... b = a.clone() ... out = (b**2).sum() ... b.sin_() ... # backward ... out.sum().backward() ... tensor([[0.8415, 0.8415, 0.8415], [0.8415, 0.8415, 0.8415]], grad_fn=<SinBackward0>) """ global _allow_mutation_on_saved_tensors_enabled ctx = _AllowMutationOnSavedContext() with _swap_with_cloned(ctx), _CloneArgBeforeMutateMode(ctx): try: if _allow_mutation_on_saved_tensors_enabled: raise RuntimeError("allow_mutation_on_saved_tensors contexts cannot be nested") _allow_mutation_on_saved_tensors_enabled = True yield ctx finally: ctx.clear() _allow_mutation_on_saved_tensors_enabled = False

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources