Source code for torch.cuda.memory
import collections
import contextlib
import ctypes
import warnings
import pickle
import sys
import os
from typing import Any, Dict, Union, Tuple, Optional
import torch
from . import is_initialized, _get_device_index, _lazy_init, _get_nvml_device_index
from ._utils import _dummy_type
from ._memory_viz import segments as _segments, memory as _memory, segment_plot, trace_plot
from torch.types import Device
from torch import _C
__all__ = ["caching_allocator_alloc", "caching_allocator_delete", "set_per_process_memory_fraction",
"empty_cache", "memory_stats", "memory_stats_as_nested_dict", "reset_accumulated_memory_stats",
"reset_peak_memory_stats", "reset_max_memory_allocated", "reset_max_memory_cached",
"memory_allocated", "max_memory_allocated", "memory_reserved", "max_memory_reserved",
"memory_cached", "max_memory_cached", "memory_snapshot", "memory_summary", "list_gpu_processes",
"mem_get_info", "get_allocator_backend", "CUDAPluggableAllocator", "change_current_allocator"]
if not hasattr(torch._C, '_cuda_CUDAAllocator'):
# Define dummy base classes
torch._C.__dict__['_cuda_CUDAAllocator'] = _dummy_type('_cuda_CUDAAllocator')
def _host_allocator():
_lazy_init()
return torch._C._cuda_cudaHostAllocator()
@contextlib.contextmanager
def _free_mutex():
torch._C._cuda_lock_mutex()
try:
yield
finally:
torch._C._cuda_unlock_mutex()
[docs]def caching_allocator_alloc(size, device: Union[Device, int] = None, stream=None):
r"""Performs a memory allocation using the CUDA memory allocator.
Memory is allocated for a given device and a stream, this
function is intended to be used for interoperability with other
frameworks. Allocated memory is released through
:func:`~torch.cuda.caching_allocator_delete`.
Args:
size (int): number of bytes to be allocated.
device (torch.device or int, optional): selected device. If it is
``None`` the default CUDA device is used.
stream (torch.cuda.Stream or int, optional): selected stream. If is ``None`` then
the default stream for the selected device is used.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
if device is None:
device = torch.cuda.current_device()
device = _get_device_index(device)
if stream is None:
stream = torch.cuda.current_stream(device)
if isinstance(stream, torch.cuda.streams.Stream):
stream = stream.cuda_stream
if not isinstance(stream, int):
raise TypeError('Invalid type for stream argument, must be '
'`torch.cuda.Stream` or `int` representing a pointer '
'to a existing stream')
with torch.cuda.device(device):
return torch._C._cuda_cudaCachingAllocator_raw_alloc(size, stream)
[docs]def caching_allocator_delete(mem_ptr):
r"""Deletes memory allocated using the CUDA memory allocator.
Memory allocated with :func:`~torch.cuda.caching_allocator_alloc`.
is freed here. The associated device and stream are tracked inside
the allocator.
Args:
mem_ptr (int): memory address to be freed by the allocator.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
torch._C._cuda_cudaCachingAllocator_raw_delete(mem_ptr)
[docs]def set_per_process_memory_fraction(fraction, device: Union[Device, int] = None) -> None:
r"""Set memory fraction for a process.
The fraction is used to limit an caching allocator to allocated memory on a CUDA device.
The allowed value equals the total visible memory multiplied fraction.
If trying to allocate more than the allowed value in a process, will raise an out of
memory error in allocator.
Args:
fraction(float): Range: 0~1. Allowed memory equals total_memory * fraction.
device (torch.device or int, optional): selected device. If it is
``None`` the default CUDA device is used.
.. note::
In general, the total available free memory is less than the total capacity.
"""
_lazy_init()
if device is None:
device = torch.cuda.current_device()
device = _get_device_index(device)
if not isinstance(fraction, float):
raise TypeError('Invalid type for fraction argument, must be `float`')
if fraction < 0 or fraction > 1:
raise ValueError('Invalid fraction value: {}. '
'Allowed range: 0~1'.format(fraction))
torch._C._cuda_setMemoryFraction(fraction, device)
[docs]def empty_cache() -> None:
r"""Releases all unoccupied cached memory currently held by the caching
allocator so that those can be used in other GPU application and visible in
`nvidia-smi`.
.. note::
:func:`~torch.cuda.empty_cache` doesn't increase the amount of GPU
memory available for PyTorch. However, it may help reduce fragmentation
of GPU memory in certain cases. See :ref:`cuda-memory-management` for
more details about GPU memory management.
"""
if is_initialized():
torch._C._cuda_emptyCache()
[docs]def memory_stats(device: Union[Device, int] = None) -> Dict[str, Any]:
r"""Returns a dictionary of CUDA memory allocator statistics for a
given device.
The return value of this function is a dictionary of statistics, each of
which is a non-negative integer.
Core statistics:
- ``"allocated.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
number of allocation requests received by the memory allocator.
- ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of allocated memory.
- ``"segment.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
number of reserved segments from ``cudaMalloc()``.
- ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of reserved memory.
- ``"active.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
number of active memory blocks.
- ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of active memory.
- ``"inactive_split.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
number of inactive, non-releasable memory blocks.
- ``"inactive_split_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of inactive, non-releasable memory.
For these core statistics, values are broken down as follows.
Pool type:
- ``all``: combined statistics across all memory pools.
- ``large_pool``: statistics for the large allocation pool
(as of October 2019, for size >= 1MB allocations).
- ``small_pool``: statistics for the small allocation pool
(as of October 2019, for size < 1MB allocations).
Metric type:
- ``current``: current value of this metric.
- ``peak``: maximum value of this metric.
- ``allocated``: historical total increase in this metric.
- ``freed``: historical total decrease in this metric.
In addition to the core statistics, we also provide some simple event
counters:
- ``"num_alloc_retries"``: number of failed ``cudaMalloc`` calls that
result in a cache flush and retry.
- ``"num_ooms"``: number of out-of-memory errors thrown.
The caching allocator can be configured via ENV to not split blocks larger than a
defined size (see Memory Management section of the Cuda Semantics documentation).
This helps avoid memory fragmentation but may have a performance
penalty. Additional outputs to assist with tuning and evaluating impact:
- ``"max_split_size"``: blocks above this size will not be split.
- ``"oversize_allocations.{current,peak,allocated,freed}"``:
number of over-size allocation requests received by the memory allocator.
- ``"oversize_segments.{current,peak,allocated,freed}"``:
number of over-size reserved segments from ``cudaMalloc()``.
The caching allocator can be configured via ENV to round memory allocations in order
to reduce fragmentation. Sometimes the overhead from rounding can be higher than
the fragmentation it helps reduce. The following stat can be used to check if
rounding adds too much overhead:
- ``"requested_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
memory requested by client code, compare this with allocated_bytes to check if
allocation rounding adds too much overhead.
Args:
device (torch.device or int, optional): selected device. Returns
statistics for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
.. note::
With :ref:`backend:cudaMallocAsync<cuda-memory-envvars>`, some stats are not
meaningful, and are always reported as zero.
"""
result = []
def _recurse_add_to_result(prefix, obj):
if isinstance(obj, dict):
if len(prefix) > 0:
prefix += "."
for k, v in obj.items():
_recurse_add_to_result(prefix + k, v)
else:
result.append((prefix, obj))
stats = memory_stats_as_nested_dict(device=device)
_recurse_add_to_result("", stats)
result.sort()
return collections.OrderedDict(result)
def memory_stats_as_nested_dict(device: Union[Device, int] = None) -> Dict[str, Any]:
r"""Returns the result of :func:`~torch.cuda.memory_stats` as a nested dictionary."""
if not is_initialized():
return {}
device = _get_device_index(device, optional=True)
return torch._C._cuda_memoryStats(device)
def reset_accumulated_memory_stats(device: Union[Device, int] = None) -> None:
r"""Resets the "accumulated" (historical) stats tracked by the CUDA memory allocator.
See :func:`~torch.cuda.memory_stats` for details. Accumulated stats correspond to
the `"allocated"` and `"freed"` keys in each individual stat dict, as well as
`"num_alloc_retries"` and `"num_ooms"`.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
device = _get_device_index(device, optional=True)
return torch._C._cuda_resetAccumulatedMemoryStats(device)
[docs]def reset_peak_memory_stats(device: Union[Device, int] = None) -> None:
r"""Resets the "peak" stats tracked by the CUDA memory allocator.
See :func:`~torch.cuda.memory_stats` for details. Peak stats correspond to the
`"peak"` key in each individual stat dict.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
device = _get_device_index(device, optional=True)
return torch._C._cuda_resetPeakMemoryStats(device)
[docs]def reset_max_memory_allocated(device: Union[Device, int] = None) -> None:
r"""Resets the starting point in tracking maximum GPU memory occupied by
tensors for a given device.
See :func:`~torch.cuda.max_memory_allocated` for details.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. warning::
This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
/all/ peak memory stats.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
warnings.warn(
"torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, "
"which resets /all/ peak memory stats.",
FutureWarning)
return reset_peak_memory_stats(device=device)
[docs]def reset_max_memory_cached(device: Union[Device, int] = None) -> None:
r"""Resets the starting point in tracking maximum GPU memory managed by the
caching allocator for a given device.
See :func:`~torch.cuda.max_memory_cached` for details.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. warning::
This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
/all/ peak memory stats.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
warnings.warn(
"torch.cuda.reset_max_memory_cached now calls torch.cuda.reset_peak_memory_stats, "
"which resets /all/ peak memory stats.",
FutureWarning)
return reset_peak_memory_stats(device=device)
[docs]def memory_allocated(device: Union[Device, int] = None) -> int:
r"""Returns the current GPU memory occupied by tensors in bytes for a given
device.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
This is likely less than the amount shown in `nvidia-smi` since some
unused memory can be held by the caching allocator and some context
needs to be created on GPU. See :ref:`cuda-memory-management` for more
details about GPU memory management.
"""
return memory_stats(device=device).get("allocated_bytes.all.current", 0)
[docs]def max_memory_allocated(device: Union[Device, int] = None) -> int:
r"""Returns the maximum GPU memory occupied by tensors in bytes for a given
device.
By default, this returns the peak allocated memory since the beginning of
this program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to
reset the starting point in tracking this metric. For example, these two
functions can measure the peak allocated memory usage of each iteration in a
training loop.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
return memory_stats(device=device).get("allocated_bytes.all.peak", 0)
[docs]def memory_reserved(device: Union[Device, int] = None) -> int:
r"""Returns the current GPU memory managed by the caching allocator in bytes
for a given device.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
return memory_stats(device=device).get("reserved_bytes.all.current", 0)
[docs]def max_memory_reserved(device: Union[Device, int] = None) -> int:
r"""Returns the maximum GPU memory managed by the caching allocator in bytes
for a given device.
By default, this returns the peak cached memory since the beginning of this
program. :func:`~torch.cuda.reset_peak_memory_stats` can be used to reset
the starting point in tracking this metric. For example, these two functions
can measure the peak cached memory amount of each iteration in a training
loop.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
return memory_stats(device=device).get("reserved_bytes.all.peak", 0)
[docs]def memory_cached(device: Union[Device, int] = None) -> int:
r"""Deprecated; see :func:`~torch.cuda.memory_reserved`."""
warnings.warn(
"torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved",
FutureWarning)
return memory_reserved(device=device)
[docs]def max_memory_cached(device: Union[Device, int] = None) -> int:
r"""Deprecated; see :func:`~torch.cuda.max_memory_reserved`."""
warnings.warn(
"torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved",
FutureWarning)
return max_memory_reserved(device=device)
[docs]def memory_snapshot():
r"""Returns a snapshot of the CUDA memory allocator state across all devices.
Interpreting the output of this function requires familiarity with the
memory allocator internals.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
return torch._C._cuda_memorySnapshot()['segments']
[docs]def memory_summary(device: Union[Device, int] = None, abbreviated: bool = False) -> str:
r"""Returns a human-readable printout of the current memory allocator
statistics for a given device.
This can be useful to display periodically during training, or when
handling out-of-memory exceptions.
Args:
device (torch.device or int, optional): selected device. Returns
printout for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
abbreviated (bool, optional): whether to return an abbreviated summary
(default: False).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
device = _get_device_index(device, optional=True)
stats = memory_stats(device=device)
def _format_size(sz, pref_sz):
prefixes = ["B ", "KiB", "MiB", "GiB", "TiB", "PiB"]
prefix = prefixes[0]
for new_prefix in prefixes[1:]:
if pref_sz < 768 * 1024:
break
prefix = new_prefix
sz //= 1024
pref_sz /= 1024
return "{:6d} {}".format(sz, prefix)
def _format_count(cnt, pref_cnt):
prefixes = [" ", "K", "M"]
prefix = prefixes[0]
for new_prefix in prefixes[1:]:
if pref_cnt < 750 * 1000:
break
prefix = new_prefix
cnt //= 1000
pref_cnt /= 1000
return "{:7d} {} ".format(cnt, prefix)
metrics_to_display = [
("allocated_bytes", "Allocated memory", _format_size),
("active_bytes", "Active memory", _format_size),
("requested_bytes", "Requested memory", _format_size),
("reserved_bytes", "GPU reserved memory", _format_size),
("inactive_split_bytes", "Non-releasable memory", _format_size),
("allocation", "Allocations", _format_count),
("active", "Active allocs", _format_count),
("segment", "GPU reserved segments", _format_count),
("inactive_split", "Non-releasable allocs", _format_count),
]
lines = []
lines.append("=" * 75)
lines.append(" {_:16} PyTorch CUDA memory summary, device ID {device:<17d} ")
lines.append("-" * 75)
lines.append(" {_:9} CUDA OOMs: {num_ooms:<12d} | {_:6} cudaMalloc retries: {num_alloc_retries:<8d} ")
lines.append("=" * 75)
lines.append(" Metric | Cur Usage | Peak Usage | Tot Alloc | Tot Freed ")
for metric_key, metric_name, formatter in metrics_to_display:
lines.append("-" * 75)
submetrics = [("all", metric_name)]
if not abbreviated:
submetrics.append(("large_pool", " from large pool"))
submetrics.append(("small_pool", " from small pool"))
current_prefval, peak_prefval, allocated_prefval, freed_prefval = None, None, None, None
for submetric_key, submetric_name in submetrics:
prefix = metric_key + "." + submetric_key + "."
current = stats[prefix + "current"]
peak = stats[prefix + "peak"]
allocated = stats[prefix + "allocated"]
freed = stats[prefix + "freed"]
if current_prefval is None:
current_prefval = current
peak_prefval = peak
allocated_prefval = allocated
freed_prefval = freed
lines.append(" {:<21} | {} | {} | {} | {} ".format(
submetric_name,
formatter(current, current_prefval),
formatter(peak, peak_prefval),
formatter(allocated, allocated_prefval),
formatter(freed, freed_prefval)),
)
metrics_to_display = [
("oversize_allocations", "Oversize allocations", _format_count),
("oversize_segments", "Oversize GPU segments", _format_count),
]
for metric_key, metric_name, formatter in metrics_to_display:
lines.append("-" * 75)
prefix = metric_key + "."
current = stats[prefix + "current"]
peak = stats[prefix + "peak"]
allocated = stats[prefix + "allocated"]
freed = stats[prefix + "freed"]
lines.append(" {:<21} | {} | {} | {} | {} ".format(
metric_name,
formatter(current, current),
formatter(peak, peak),
formatter(allocated, allocated),
formatter(freed, freed)),
)
lines.append("=" * 75)
fmt_dict = {"_": "", "device": device}
for k, v in stats.items():
fmt_dict[k.replace(".", "-")] = v
return "|" + "|\n|".join(lines).format(**fmt_dict) + "|\n"
[docs]def list_gpu_processes(device: Union[Device, int] = None) -> str:
r"""Returns a human-readable printout of the running processes
and their GPU memory use for a given device.
This can be useful to display periodically during training, or when
handling out-of-memory exceptions.
Args:
device (torch.device or int, optional): selected device. Returns
printout for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
"""
try:
import pynvml # type: ignore[import]
except ModuleNotFoundError:
return("pynvml module not found, please install pynvml")
from pynvml import NVMLError_DriverNotLoaded
try:
pynvml.nvmlInit()
except NVMLError_DriverNotLoaded:
return ("cuda driver can't be loaded, is cuda enabled?")
device = _get_nvml_device_index(device)
handle = pynvml.nvmlDeviceGetHandleByIndex(device)
procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
lines = []
lines.append(f"GPU:{device}")
if len(procs) == 0:
lines.append("no processes are running")
for p in procs:
mem = p.usedGpuMemory / (1024 * 1024)
lines.append(f"process {p.pid:>10d} uses {mem:>12.3f} MB GPU memory")
return "\n".join(lines)
[docs]def mem_get_info(device: Union[Device, int] = None) -> Tuple[int, int]:
r"""Returns the global free and total GPU memory for a given
device using cudaMemGetInfo.
Args:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more
details about GPU memory management.
"""
if device is None:
device = torch.cuda.current_device()
device = _get_device_index(device)
return torch.cuda.cudart().cudaMemGetInfo(device)
def _record_memory_history_legacy(enabled: bool, record_context=True,
trace_alloc_max_entries=1,
trace_alloc_record_context=False, device: Union[Device, int] = None,
record_context_cpp=False):
with torch.cuda.device(device):
_C._cuda_recordMemoryHistory(enabled, record_context, record_context_cpp,
trace_alloc_max_entries, trace_alloc_record_context)
def _record_memory_history(enabled="all", *args, **kwargs):
"""Enables recording of stack traces associated with memory
allocations, so you can tell what allocated any piece of memory in
:func:`torch.cuda.memory._snapshot()`.
In addition too keeping stack traces with each current allocation and free,
this will also enable recording of a history of all alloc/free events.
Use :func:`torch.cuda.memory._snapshot()` to retrieve this information,
and the tools in `_memory_viz.py` to visualize snapshots.
The Python trace collection is fast (2us per trace), so you may consider
enabling this on production jobs if you anticipate ever having to debug
memory issues.
C++ trace collection is also fast (~50ns/frame), which for many typical programs
works out to ~2us per trace, but can vary depending on stack depth.
Args:
enabled (Optional[str], optional):
None - disable recording memory history.
"state" - keep information for currenly allocated memory.
"all" - additionally keep a history of all alloc/free calls
Defaults to "all".
context (Optional[str], optional):
None - Do not record any tracebacks.
"state" - Record tracebacks for currently allocated memory.
"all" - additionally keep tracebacks for alloc/free calls
Defaults to "all".
stacks (str, optional):
"python" - include Python, TorchScript, and inductor frames in tracebacks
"all" - additionally include C++ frames
Defaults to "all".
max_entries (int, optional): Keep a maximum of `max_entries`
alloc/free events in the recorded history recorded.
Defaults to sys.maxsize.
device (Union[Device, int], optional): Which CUDA device to enable recording.
Defaults to the current device.
"""
if isinstance(enabled, bool):
return _record_memory_history_legacy(enabled, *args, **kwargs)
else:
return _record_memory_history_impl(enabled, *args, **kwargs)
def _record_memory_history_impl(enabled: Optional[str] = "all",
context: Optional[str] = "all",
stacks: str = "all",
max_entries: int = sys.maxsize,
device: Union[Device, int] = None):
if enabled not in ["state", "all", None]:
raise TypeError("expected state to be 'state', 'all', or None")
if context not in ["state", "all", None]:
raise TypeError("expected context to be 'state', 'all', or None")
if stacks not in ["python", "all"]:
raise TypeError("expected stacks to be 'python', or 'all'")
enabled_ = enabled is not None
record_context = context is not None
trace_alloc_max_entries = max_entries if enabled == "all" else 1
trace_alloc_record_context = context == "all"
record_context_cpp = stacks == "all"
with torch.cuda.device(device):
_C._cuda_recordMemoryHistory(enabled_, record_context, record_context_cpp,
trace_alloc_max_entries, trace_alloc_record_context)
def _snapshot(device: Union[Device, int] = None):
with torch.cuda.device(device):
return _C._cuda_memorySnapshot()
def _dump_snapshot(filename='snapshot_dump', device: Union[Device, int] = None):
os.makedirs(filename, exist_ok=True)
s = _snapshot(device)
with open(f'{filename}/snapshot.pickle', 'wb') as f:
pickle.dump(s, f)
with open(f'{filename}/trace_plot.html', 'w') as f:
f.write(trace_plot(s))
with open(f'{filename}/segment_plot.html', 'w') as f:
f.write(segment_plot(s))
def _save_segment_usage(filename='output.svg', snapshot=None):
if snapshot is None:
snapshot = _snapshot()
with open(filename, 'w') as f:
f.write(_segments(snapshot))
def _save_memory_usage(filename='output.svg', snapshot=None):
if snapshot is None:
snapshot = _snapshot()
with open(filename, 'w') as f:
f.write(_memory(snapshot))
def _set_allocator_settings(env: str):
return torch._C._cuda_cudaCachingAllocator_set_allocator_settings(env)
[docs]def get_allocator_backend() -> str:
r"""Returns a string describing the active allocator backend as set by
``PYTORCH_CUDA_ALLOC_CONF``. Currently available backends are
``native`` (PyTorch's native caching allocator) and `cudaMallocAsync``
(CUDA's built-in asynchronous allocator).
.. note::
See :ref:`cuda-memory-management` for details on choosing the allocator backend.
"""
return torch._C._cuda_getAllocatorBackend()
class _CUDAAllocator:
r"""Wrapper over internal CUDA memory allocators.
"""
def __init__(self, allocator: torch._C._cuda_CUDAAllocator):
self._allocator = allocator
def allocator(self):
return self._allocator
[docs]class CUDAPluggableAllocator(_CUDAAllocator):
r"""CUDA memory allocator loaded from a so file.
Memory allocators are compiled in .so files and loaded dynamically using ctypes.
To change the active allocator use the :func:`torch.memory.cuda.change_current_allocator`
function.
Args:
path_to_so_file(str): Path in the filesystem to the `.so` file containing
the allocator functions
alloc_fn_name(str): Name of the function to perform the memory allocation
in the so file. The signature must be:
void* alloc_fn_name(ssize_t size, int device, cudaStream_t stream);
free_fn_name(str): Name of the function to perform the memory release
in the so file. The signature must be:
void free_fn_name(void* ptr, size_t size, cudaStream_t stream);
.. warning::
This is currently supported only in unix OSs
.. note::
See :ref:`cuda-memory-management` for details on creating and using a custom allocator
"""
def __init__(self, path_to_so_file: str, alloc_fn_name: str, free_fn_name: str):
allocator = ctypes.CDLL(path_to_so_file)
alloc_fn = ctypes.cast(getattr(allocator, alloc_fn_name), ctypes.c_void_p).value
free_fn = ctypes.cast(getattr(allocator, free_fn_name), ctypes.c_void_p).value
assert alloc_fn is not None
assert free_fn is not None
self._allocator = torch._C._cuda_customAllocator(alloc_fn, free_fn)
[docs]def change_current_allocator(allocator: _CUDAAllocator) -> None:
r"""Changes the currently used memory allocator to be the one provided.
If the current allocator has already been used/initialized, this function will error.
Args:
allocator (torch.cuda.memory._CUDAAllocator): allocator to be set as the active one.
.. note::
See :ref:`cuda-memory-management` for details on creating and using a custom allocator
"""
torch._C._cuda_changeCurrentAllocator(allocator.allocator())
def _get_current_allocator() -> _CUDAAllocator:
r"""Returns the allocator being currently used.
.. note::
See :ref:`cuda-memory-management` for details on creating and using a custom allocator
"""
return _CUDAAllocator(torch._C._cuda_getAllocator())