prepare_qat_fx¶
- class torch.ao.quantization.quantize_fx.prepare_qat_fx(model, qconfig_mapping, example_inputs, prepare_custom_config=None, backend_config=None)[source]¶
Prepare a model for quantization aware training
- Parameters
model (*) – torch.nn.Module model
qconfig_mapping (*) – see
prepare_fx()
example_inputs (*) – see
prepare_fx()
prepare_custom_config (*) – see
prepare_fx()
backend_config (*) – see
prepare_fx()
- Returns
A GraphModule with fake quant modules (configured by qconfig_mapping and backend_config), ready for quantization aware training
- Return type
Example:
import torch from torch.ao.quantization import get_default_qat_qconfig_mapping from torch.ao.quantization import prepare_fx class Submodule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(5, 5) def forward(self, x): x = self.linear(x) return x class M(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(5, 5) self.sub = Submodule() def forward(self, x): x = self.linear(x) x = self.sub(x) + x return x # initialize a floating point model float_model = M().train() # (optional, but preferred) load the weights from pretrained model # float_model.load_weights(...) # define the training loop for quantization aware training def train_loop(model, train_data): model.train() for image, target in data_loader: ... # qconfig is the configuration for how we insert observers for a particular # operator # qconfig = get_default_qconfig("fbgemm") # Example of customizing qconfig: # qconfig = torch.ao.quantization.QConfig( # activation=FakeQuantize.with_args(observer=MinMaxObserver.with_args(dtype=torch.qint8)), # weight=FakeQuantize.with_args(observer=MinMaxObserver.with_args(dtype=torch.qint8))) # `activation` and `weight` are constructors of observer module # qconfig_mapping is a collection of quantization configurations, user can # set the qconfig for each operator (torch op calls, functional calls, module calls) # in the model through qconfig_mapping # the following call will get the qconfig_mapping that works best for models # that target "fbgemm" backend qconfig_mapping = get_default_qat_qconfig("fbgemm") # We can customize qconfig_mapping in different ways, please take a look at # the docstring for :func:`~torch.ao.quantization.prepare_fx` for different ways # to configure this # example_inputs is a tuple of inputs, that is used to infer the type of the # outputs in the model # currently it's not used, but please make sure model(*example_inputs) runs example_inputs = (torch.randn(1, 3, 224, 224),) # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack # e.g. backend_config = get_default_backend_config("fbgemm") # `prepare_qat_fx` inserts observers in the model based on qconfig_mapping and # backend_config, if the configuration for an operator in qconfig_mapping # is supported in the backend_config (meaning it's supported by the target # hardware), we'll insert fake_quantize modules according to the qconfig_mapping # otherwise the configuration in qconfig_mapping will be ignored # see :func:`~torch.ao.quantization.prepare_fx` for a detailed explanation of # how qconfig_mapping interacts with backend_config prepared_model = prepare_qat_fx(float_model, qconfig_mapping, example_inputs) # Run training train_loop(prepared_model, train_loop)